
ISRAEL JOURNAL OF MATHEMATICS, Vol. 39, No. 4, 1981 

THE RANGE OF A PROJECTION 
OF SMALL NORM IN 17 

BY 

M. ZIPPIN* 

ABSTRACT 

It is proved that there exists a positive function ~b(e) defined for sufficiently 
small e > 0 and satisfying lim,_~, ~ ( e ) =  0 such that for any integers n > k > 0, 
if O is a projection of 17 onto a k-dimensional subspace E with II O [[---- 1 + e 
then there is an integer h > k(1 - ,#(e)) and an h-dimensional subspace F of E 
with d(F, I ~ ) -  < 1 + 4~(e) where d(X, Y) denotes the Banach-Mazur distance 
between the Banach spaces X and Y. Moreover, there is a projection P of I~' 
onto F with I I P I l -  ~ 1 + ~(e) .  

1. Introduction 

A Banach space X is called a PA space if whenever X is contained in a Banach 

space Y there is a projection P of Y onto X with I[ P [[ < A. It is well known and 

easy to see that for each set M, the space L(M) ( = the space of all bounded real 

functions [ on M with Ill [[ = supm~M If(re)l) is a P, space. Nachbin [4], Goodner 

[2] and Kelley [3] characterized the P~ spaces. They showed that X is a P, space 

if and only if X is isometric to a space C(S) where S is compact, Hausdorff and 

extremally disconnected. In particular, every finite dimensional P, space is 

isometric to l~ ( = the space of n-tuples x = (x~, x2,-" ", x,) of real numbers with 

IIx[[ = max~,~.[x, [). It is not known what the P~ spaces are and, in particular, 

the following question is open. 

PROBLEM 1. IS every P~ space isomorphic to a P, space ? 

Since any two n-dimensional spaces are isomorphic, the finite dimensional 

version of Problem 1 should be tephrased. Let X and Y be isomorphic E anach 

spaces. The Banach-Mazur distance d(X, Y) i s  defined to be infTlITItllT-'ll 
where the inf is taken over all invertible operators T from X onto Y. Now we 

may reformulate the finite dimensional version of Problem 1 as follows: 
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PROBLEM 2. Does there exist a function ~b(A) => 1 such that, for every k, if E is 

a k-dimensional Pa space then d(E, l~ )<  ~b(A)? 

As is well known, every finite dimensional space E is isometric to a subspace 

of L and since L is the closure of a set (directed by inclusion) of finite 

dimensional subspaces E~ where E,. is isometric to l ~  (d (a)  = dimension E,) ,  

it is clear that in order to answer Problem 2 it is enough to consider subspaces of 

the spaces l~ onto which there is a projection of norm smaller than A. Since 

(l"~) *=  17 ( =  the space of all n-tuples y = (yl, '"  ", y,) of real numbers with 

IIY I1 = Y~;'=~ l Y, 1) a duality argument shows that Problem 2 is equivalent to the 

following. 

PROBLEM 3. Does there exist a function ~b(A)_ -> 1 such that for any integers 

n > k > 0 and any projection Q of l~ onto a k-dimensional subspace E with 

[I O ]1 < A it is true that d(E, l~) < ~b(A)? 

Being unable to solve Problem 3, we restricted our attention to the range of a 

projection P of l~' with norm [[PH close to 1. In this case we can prove that the 

range P(lT) is "close" to an la space in the following sense: 

THEOREM. There exist a positive e,, and a positive function ~b(e) defined for 

0 <  e < e,, with lim~_.,,qb(e) = 0 such that if k and n are any integers satisfying 

n > k > 0 and Q is a projection of 17 onto a k dimensional subspace E of 17 with 

IIOll---- 1 + then there is an integer h >->_ k(1 - ~b(e)) and an h dimensional 

subspace F of E with d(F, l~') =< 1 + d~(e). Moreover, there is a projection e of 17 

onto F with IIPtl-<- 1 + 4,(e). 

Recently J. Bourgain [1] has proved that there exist positive functions s(A) 

and t(A) such that for every n, every n dimensional PA space contains a k 

dimensional subspace F with d (F, I~) =< s (A) and k >->_ nt (A). A short proof of the 

same fact was shown to us by W. B. Johnson. However it seems that their 

methods do not yield the above Theorem. 

2. Preliminaries 

The special case of the Theorem where II OII = 1 is well known and follows 

from the characterization of P, spaces mentioned in the introduction. We will 

start by giving a simple proof of this special case. The proof uses only trivial 

convexity arguments. These arguments will be generalized to provide a proof of 

the Theorem. 
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LEMMA 1. Let n > k > 0  and let Q be a projection of l7 onto a k dimensional 

subspace E of 17 with IIQII-- 1. Then E is isometric to IL 

Let (a~j) be the matrix representing Q with respect to this basis, i.e., 

Qe~ = E,~ aj~ej for all 1 =< i _-< n. Let x,, x z , "  ", xk be k linearly independent 

extremal points of the unit ball of E (such points exist by the Krein-Milman 

theorem). Clearly, for each 1 _-< m _-< k, xm is an image of an extremal point of the 

unit ball of l~'. Let 1 _-< m _-< k and let x,. = +-Qe,,.~, then -xm = Qe,(.,~ = 

E~.~ aj,.~ej = E,~, a~,~Qej and because X,n is an extremal point and E ~  I a~,,,.,I =< 

II o II = 1 we have that +- x,. = Qe,.~ = "4 Qe~ for all j for which aj,,.) ~ 0. Hence 

there is a subset A,. of {1, 2 , - . . ,  n} such that i ~ A,. if and only if aj , , . )~ 0 and 

Qej = +-Qe,,.~ = +-x~. The sets A~, A2,." ", AE are clearly pairwise disjoint and 

x~ = +-Ej~A.aj,..)ej for each 1 =< m =< k hence span{xm}~, = E is isometric to 

liE. This proves Lemma 1. 

The above convexity argument can be generalized to the case where "almost"  

convex combinations of elements of 17 replace convex combinations and certain 

"maximal" vectors play the role of extremal points of the unit ball of IL The next 

two easy lemmas are extensions of convexity arguments in the above mentioned 

direction. 

LEMMA 2. Let ' > 7 / > 0  and .-Jr/> 0 > 0 .  Let {x,}7~, and {y,}7., be numbers 

where x, >= 0 for all i, ETa, x~ <= 1 + O, y <-<_ E x,y, and the following conditions are 

satisfied: for each i, y, <= 1 + 0 and I - 0 <= y <= 1 + 8. Let A = {i : y, = 1 - ~7}. 
Then E~Ax~ > 1 -- 30TI -~. I f  71 ---->30 '/2 then E~Ax~ >= 1 -- 8 '/2. 

PROOF. Note that Lemma 1 is a trivial convexity argument if 0 = r / =  0. We 

have that 

1 - O < y = ~ x , y , = ~ x , y , +  ~,  x , y , < = ( l + O ) ~ x , + ( 1 - ~ l )  ~ x, 
i ~ l  l E A  l E A  c l E A  i E A  C 

_<(1+ 0,(7 x)+ [1+ 0 (1 

Hence 1 - - 0 - - ( 1 - r l ) ( l + 0 ) = < ( 8 + r / ) ( E , ~ A x , )  and therefore r / - 2 8 - <  

(n + 0)(E,~A x, ). It follows that E,~A x, ->(1 + 0/r/)-'(1 --2(8/,/)) > 

(1 - -0 / r l ) (1 - -20 / r l )=  > 1 -30 / r l .  If 7/---->38 '/2 we get that E,~Ax, => 1 - 8  '/2 

The next lemma is an extension of Lemma 2 to the m dimensional case. It 

expresses in a quantitative way the fact that certain "almost maximal" vectors o 

in 17 behave like extreme points in the following sense: whenever v is an 
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"almost"  convex combination of certain vectors 0, (with II o, II close to 1) then 

"mos t "  of the o~'s are close to 0. 

LEUMA 3. Let 0 < 0 < 8 -4, let v = Y.~'., ajej and  v~ = ~,.~ a~,e~, 1 <- i < n be 

elements o f  17 where {e~}~'=t denotes the unit  vector basis. A s s u m e  that  o = Y.7.~ b,v, 

where Z?=~[b~[< l+O a n d  that  [[o~[l<l+O for all l < - i < r g  and  let 1 - 0  < - 

II o II = 1 + 0. Let M~ = max,~,=,. I aj, I and assume that for each 1 <= j <- m, 

(l + O)la, l> ~ .  
Finally, let n={i: l lo-o,  ll<~ or 1 1 o + o , 1 1 < ~ }  where t z > 8 0  '/4. Then 

~.,~.Ib,[> ~-o ~'~. 

PROOF. We may assume without loss of generality that a j ->0  for all 

1 <-j <- m (otherwise we replace e~ by - e~). We may also assume that b~ ~ 0  for 

all i. (Indeed, if b~ < 0 we may replace it by -b~ and replace oj by -o~.)  Let 

4 -~ > 4) _>- 20 "~ and let G = {] : aj~ -< aj (1 - 4))} and Bo = {i : Y.jec, aj < 4)}. Then 

Bo C B. Indeed, for i ~ Bo we have that 2~c~ aj > 1 + 0 - 4) hence 

i=J iEc~ jec~ 

i~cj  j~c, iEc~ 

<- ~ a, +(l +o) Y~ a, +4)(1+o) 
jeC~ i~G 

<- 4)/)(2 + 0) + 4)(1 + 0) = 4)(3 + 20) < 44). 

Hence  Bo C B. It remains to estimate 2,~B,, b,. First note that if i g B,  then 

: g j ~  aj -< 1 + 0 - 4) and so 

~a,,= E a,,+ E a,, ~ (1 -4 ) )E  a , + ( l + 0 ) E  a, 
i - I  J~G iEC~ jeC~ iEC~i 

_-<(1-4))~ a, +(4)+o) 5". a, 
] - I  ieC~ 

<-(] - 4))(1 + 0 ) + ( 4 )  + o) (1  + 0 - 4)) 

= (1 + 0 )  ~ -  4)0 - 4)2 _ (1 + 0 )  ~ -  4);. 

_ m = 4)~ '_  0_~. Now use Lemma 2 with x~ = b~, y~ = Y,=, aj,, y - Yj=, aj and 7/ 20 - 

Then we get that Y-,ea,,b, > 1 -30 /7 / .  Since 4 - ' >  4 ) > 0  is such that 4) :>  

3 0 w / 2 + 2 0 + 0 2 w e g e t t h a t r / = 4 ) 2 _ 2 0 _ 0 : > 3 0 , . _ h e n c e ,  b y L e m m a l , Y ~ e ~ b >  - 

:g~e~, b, _ - 1 -  0 j/:. This proves Lemma 3. 



Vol. 39, 1 9 8 1  PROJECTION OF SMALL NORM IN I]' 353 

REMARK 4. As a consequence of Lemma 3 we get the following more 

general version of Lemma 3: 

If, instead of assuming that (1 + 0)l at I > M~ for all 1 -<_ j -<_ m, we assume that 

the inequality holds only for 1 =<j < r~ < m and Yt =~ l a t l >  1 - 0 where 0 > 0  
then we may p u t ~ -  '~ = '~ = = - E t =, aje, ~i aider, ~ > E,~ ,  2(tJ) '/2 a n d / j  {i:]1~- ~,11< 
# or I1,~ + ,~, II < ~ } where/2 = 4~. Then, by Lemma 3, if 0 < / J  < 8-' we get that 

E~ab~ > 1 -/j~/2. However, for each i E / J  we have that 

i = ~ + t  t=r~+! t=th+l  

~ +ff+0+(l+0-l l~, l l )  

<-_fi + ff + O + l + O - ( 1 - f f  - f t )  

=2/2 + 2/J + 20. 

It follows that if A = {i: [I v -  v, l[ < 17ff'/2 or IJ v + v, [J < 17/J'/2} and /J  is small 

enough then Y~,~A I b~ t > 1 - if'/". 

We are interested in the range of a projection Q with norm close to 1 and not 

in the projection itself. It happens to be more convenient to work with 

projections Q on 17 for which II Oe, II is close to 1 for 1 =< i =< n. The next lemma 

tells us that, without loss of generality, we may always assume that Q has this 
desired property. 

LEMMA 5. Let {e~ }7=, be the unit vector basis of  1~, let 0 < e < 16 -2 and let P be 

a projection of l~ onto a k dimensional subspace E of 17 with IIPII< 1 + e. Then 
there is a subset A C{1, 2 , . . . ,  n} and a projection Q of the space X = span{e,},~A 

onto its subspace F such that II OII < 1 + 2e t/2 and d(E,  F)  < 1 + 2e 1/2. Moreover, 
for each i E A,  II Qe, [[ >= 1 - 8e ,,2 

PROOF. Let /~ = e '/2(1 + e), let A = {i :llPe, II > 1 - ~} and let Pe, = XT=, at,el. 

Then X~'~ t a,, I < 1 + e and for any 1 =< i =< n 

ta,,I---Ilee, ll-- 
t= l  

< 

I1,  11 I1,  II + I1,  a,iPet 1[ 
( t ~ A J a " l ) ( l + e ) + ( , ~ r  x)  

hence # ETa, [a,, J ~(X,~AJa,, I)(tz + e). It follows that 
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la,,l<=s ~ la,,J<-(~la,,I)etx-'<-l.t-'e(l+e)=e '/~ 

Let T be the opera to r  defined on I~' by T(XTa~e~)= X,~Aa,e, a n d  let X = 

span{e,},~a. Then clearly, for each 1 -<-i _-< n, [[ TPe, - Pc, 11 = Ej~A~[ aj, [ <  e ~/2 and 

therefore  [[ TP - P [[ < e '/2 

Let 7 be  the opera to r  defined by 7"x = TPx + (I - P)x. Then [1T - I 1[ <_- e '/-" 

and therefore  ~P is invertible. Let  Q = TPT-~ Ix and let F = TE. Then Q2 = Q, 

o x  - F, IlOll=<ll  llllPllllr _-< (1 + e ) [ 1  - _-__ 1 + 2 e  */: and d ( F , E )  < 

I1 7- '11 =< (1 - e ' ' ) - '  _-< 1 + 2e "-~. Moreover ,  for each i E A, 

II Oe, I[ > II Pe, If -II P - o II => 1 - p. - (11P H I[ I - 711 + II # P  11 II i - T ' l l )  

> 1 - 2e ,/2 _ [(1 + e )e  ,/2 + (1 + e)(1 + e ,/2)111 - 'I'-' II]- 

But  ]1I - T '1[ = [I ~ ' - ' ~ ' -  i"- '[I--<J[T-'I[[II- 7"1[< ( 1 - et/2)-Iel/2 ~ (  1 +2e ' / - ' )  el/2 

and therefore  [I Qe, I[ > 1 - 8e ,/2. This proves L e m m a  5. 

3. Proof  of the Theorem 

In view of L e m m a  5, in order  to prove  the theorem it suffices to prove  the 

following. 

PROPOSITION. There exist a positive e,, and a positive function fl ( e ) defined for 

0 < e < e,, with l i m ~ ,  f l (e)  = 0 such that for every n > k > 0 ,  if Q is a projection 

of 17 onto a k dimensional subspace E of 17 with Jl Q [I < 1 + e and if I1Qe, II >= 1 - e 

for any basis element e~, 1 <-_ i <= n, then there is an integer h >-_ k(1 - fl(e )) and a 

subset A = {i(1), i ( 2 ) , . . . ,  i(h)} C { 1 , 2 , . . . ,  n} and there exist pairwise disjoint 

subsets At ,  A : , " . , A h  of { 1 , 2 , . . . , n }  such that for any l <=m <=h, if Qe, m) = 

~=~ aj,,,)ej, then Y.j~A.Iaj,(~)[ > 1 - fl(e).  Hence E contains an h dimensional 

subspace F = span{Qe, t, .)}~t with d(F, l~) < (1 - f l(e))  -~ (1 + [3(e)). Moreover, 

there is a projection P of 17 onto F with I] P I1 _-<(1 - e - / 3 ( e ) ) - ' ( 1  + e +/3  (e)). 

PROOF OF THE PROPOSITION. Let  the project ion Q be represented  by  the 

matrix M = (a,j), i.e., for each basis e lement  e~, Qe, = X~'=l ajlej and let Mj = 

m a x , ~ ,  l aj~ I. We  will need  est imates for XT=~ Mj. To  obtain  the upper  est imate,  

let l[ Q IIA denote  the nuclear  norm of Q, i.e., 11Q IIA = inf Y.j [1~ II [Ixj II where  the inf 

is taken over  all representa t ions  of Q of the form Qx = Xj[~(x)xj (for all x E l~') 

with xj E 17 and ~ E 17" = l~. Since (ej);=, is the unit vector  basis of 17 clearly 

II Q [IA = X~'=, I[~ 11 where  ~ are the functionals for which Qx = ET=t [j(x)ej for all 

x E l ~ ,  i.e., ~ = ( a n ,  a j 2 , . . . , a j , ) ~ l g .  But  [ ] ~ [ [ = m a x ~ < .  [a j~I=Mj and thus 
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XT=,Mj =llOlk. On the other hand, because E is k-dimensional ,  O has a 
representation Qx = E~=, Q*g~(x)yj where (yj, gj)~=~ is an Auerbach basis of E, 
that is, y~ E E, gj E E*,  gj(y,) = 8, 4 and IIYJ II = IIg~ I1 = 1 for all 1 _-<j _-< n. It follows 
that 

k 

M, = II o I1.,-<11(911 E IIg, 11 II yJ II =< k I lol l  =< k(1 + e). 
/=z j=z 

Hence k = trace(Q)_---X,-, Mj _-< k(1 + e). 
Let l~ = {(j, i): i, j = 1, 2 , . . . ,  n } and define a probability measure P on 1~ by 

P(j, i) = I aq I Mj (E~, =, apj )-' ( E~ =, Mq )-'. It follows from the above estimates that 

(1) la,j IMj (1 + e)-'-k-'<-_ P(j, i)<= laq IMj(1 - e)- 'k- ' .  

Let ~ = e u-~ and for each 1 _-< j _-< n let Fj = {(j, i): I aj, I > Mj (1 - 8)}. The set F~ is 

a subset of the j t h  row of ft. We would like to compute  P (  UT=~ Fj ). To  do this, 
first note that for each 1 =< j _<- n 

a,, = 2 a,,aj, _-_ ~ aqa,, + ~, a,,a,, 
i = J 0.1)~r t 0.i )~r~ 

<( X .a...).... 
x O.oErj O, r~ 

_-<( Z 
/J, ~ f fd)~r j  / J  

Taking the sum over j we get that 

k = a j~_- - - ( l+e) (1-8)  M j + 8 ~ M ~  aq . 
i=1 j= l  j= l  ~O.i)~rj 

Since Z;-I Mj _--< k(1 + e)  it follows that 

k [ 1 - ( l + e ) 2 ( 1 - 8 ) ] N " 2 M J (  2 la, , I)  
i - t  xO. i )~r  i 

and therefore,  by (1), 

) 1-3a-'e<=k-'j~lVlj la,jl = ( l + e  F t .  
o, r~ j-i 

It follows that 
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(2) P (  C} F , ) - - > ( l - 3 e " 2 ) ( l +  e)-"=> 1 - 4 e  ' '  
i=l 

if e is small enough.  

Now let F* = {(i, j ) :  (], i) E Fj }, i.e., F* is a subset of the j t h  column of l-l. We 
n , 

need an est imate on P(  [,Jj=l F~ ). For  each (i , j)  ~ F* we have that (], i) E Fi and 
hence l a~, [>  M j ( 1 -  8). It follows from (1) that 

P(i , j )  >= (1 + e)-2k-'I a,, [M~ >- (1 + e)-2k-l(1 - 8)MjM, 

O) 
_-> (1 + e)-2k-l(1 - 8)Mj I a,j I--- (1 + e)-2(1 - 8)(1 - e )eq ,  i) -> (1 - 4 e  .n)p(j, i) 

if e is small enough.  Combining (2) and (3) we get that 

,4, ,( 0 0 
i=1 i=1 

Let A = ( U~=I Fj ) N ( IJ~"_-i F*),  then (i , j)  ~ A if and only if (j, i) E A and 

i=1 i=1 

if e is small enough.  

Let A~ ={i:(i,j)~A}={i:(j,i)~A}. We know that if i EAj  then l a , j l>  
M , ( 1 -  8). We are interested in those columns of the matrix (a,j) for which 

~s is close to 1, and we would like to est imate the number  of these 
columns.  It follows from (5) that  

1 -  lSe'"_--<V(A)= ~ Z Pq, i)<-(1-e)-lt-l~., 5". la,,lM~ 
i - I  i E A  I i - I  i E A  l 

hence,  for small e > 0, we have that  

(6) 1 - 20e ,,2 <= ~ ( k - 'Mj  a,j . 
1=1 

Now by Le mma  2 with 0 = 20e ~/2, xj = k-lMj, yj = E,~,,[ a,j [ and r / =  30 ~/2 we get 

a subset A C { 1 , 2 , . . . , n }  such that  for each j ~ . A ,  2 , ~ , , l a , j l > l - n  and 

2~,~ k- lMj = 1 - 0 'a. Recall that  for i E At, [a,j ] > M,(1 - 8) and hence Oeq = 
~,'~.~ a~e~ with q ~ A has the proper ty  that "mos t "  of its components  satisfy 
]a s J_-> M~(1 - 8). Consequent ly,  since Oeq = E7-1 a~e, = O2eq = Y-7-~ a~Oel we 
get, in view of R e m a r k  4, that there is a subset A~ of {1 ,2 , . - . ,  n} such that 

~,eA, J atq ] > 1 - ~,/2 and for each i E A~ either 1] Oe~ - Oe, II < 17o'/z or 
II Oe, + Oct II < a7e '~ (we use Remark  4 with v, = Oei, 0 = (1 - (5) -~ - 1 and 
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= 7/= 30"-'). Let a = 170 '/'. If p E A then there is a subset Ap of {1 ,2 , . . . ,  n} 

such that E,~A~ [a,~ [ > I - 0 "  and for each i ~ ap either II Oe~ - Oe, II < ~ or 

II Oe, + Oe, II < ,~. Hence, if for both signs +-, l{ Qep -4- Oeq II > 3a then Ap and Aq 

are disjoint sets. 

Thus for each p E A either for one sign +-- Oep is within distance 3a  from Oeq 
or for both signs IIOe~-Oe~11_---2-20'/2. It follows that there is a natural 

number h >= 1, there are h integers 1 _-< i (1)< i (2)< . . .  < i(h) <- n and there 

are h pairwise disjoint subsets {A,.}~=, such that E,~A. [a, ,-,,I > 1 -  0'/~" for all 

{Oe,,,~},,=, are vectors with "almost"  disjoint supports). 1 -<_ m _-< h (hence h 

Moreover, if j U A  then there is one integer p(j), l<=p(j)<-h such that 

IIOe, +-Oe,~o,ll<-3a for one choice of the sign. We want h to be as close to k 

( = dim E)  as possible. Unfortunately, so far we have no reason to believe even 

that h > 1. The estimate on h will be achieved by arguments concerning the 

trace. Let R be an operator on l~' defined by the matrix (b~.j), i.e., Rej = Y.7-~ b,.je~, 
where b,j = a,j if j ~ A while, for j E A, b,j = +- a, ~o~, where the integer pfi) and 

the sign are chosen so that H Qe~ +-Qe,,o,H <-3a. It follows that I I O -  R II =<3a. 

Now note that Re, ~ E for all 1 _-< i -< n, hence the range of R is contained in 

the k dimensional subspace E and therefore I trace(Q - R)I ----II O - R II k -< 

3ak. It follows that trace R -> trace Q - Itrace(Q - R)I -> k(1 - 3a).  On the 

other hand, 

trace R = bjj ffi ~ ~,, § ~, E +-~,,,~, <- M, § E II Q~,,-,II 
j - I  iOtA m f f i l  p ( j ) ~ / ( m )  " m f f i l  

<--_~It4j- ~, ~ + h ( l + e ) < f f i k t l + e ) - k t l - O " 2 ) + h t l + e ) .  
i=l i ~ A  

It follows that h _-> k [ 1 - 3 a  - (1 + e) +(1 - 0~J2)] (1 + e) -~, clearly 

[1 - 3a - (1 + e) + (1 - 0'~)] (1 + e)- '  -* 1 as e -* 0. The existence of the desired 

projection follows by a standard perturbation argument. This completes the 

proof of the Proposition. 

REMAag 6. We suspect that one cannot prove the Theorem with h = k by 

using only the "almost maximal" vectors appearing in the proof above (i.e., 

vectors t~, -- ~ ' - i  aj, ej where, for "mos t"  j, [a j, ] > Mj(1 - 8)). Indeed, let O be the 

projection defined on !~" by the matrix " ,2n , ,  _- ta,D,-lj-1 where a,, = I for I <_- i < n, 

ajj = 0 for all I <- i <- n and j ~ / ,  a,j = n -~ for all n + I -< i,j <- 2n, ajj = e( l  - n -l) 

i f n + l _ - < i < - 2 n  a n d j = i - n  a n d a , j = - e n  - ~ i f n + l _ - < i _ - < 2 n  a n d j ~ i - n ,  

I <-j <- n. In this example E is of dimension n + I and Oe, = n -~ ~"=n+~ e~ for all 

n + I _~ i _-<2n while Mj ffi e ( l  - n -I) for n + I _-j ffi<2n, i.e., the components of 
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Qei are much smaller  than  the respect ive maxima  Mj in this case (n + 1 < i -< 

2n). 
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